Critical Aquifer Recharge Areas Review

Draft Final Report

CARA Review Committee Meeting 4
May 14, 2013

Mike Murray HDR
Michael Kasch HDR
Michael Hermanson Spokane County Utilities
Presentation Outline

- Draft Final CARA Review Report Overview
 - Report Structure
 - Technical Overview and Recommendations
 - CARA Spreadsheet
- Gather Comments
- Roundtable Discussion
Report Structure

- Executive Summary
 - Overview of project and recommendations
- Attachment A
 - Guidance for analysis
- Attachment B
 - Summary of project technical review
- Attachment C
 - Summary of stakeholder involvement
Review of Existing Code

- Non-residential uses in moderate and high susceptibility areas shall have a disposal system that protects the aquifer, <90 gallons of wastewater per acre per day
- County required to regularly review protection measures as effective, enforceable, and equitable
- Review concluded
 - Code protects aquifers for most situations
 - However a site specific approach is recommended to meet the goals of effective, enforceable, and equitable
Evaluate Standard Revisions

- Examined the characteristics of non-residential wastewater
- Reviewed potential fate and transport of wastewater
 - Nitrate – high mobile and primary contaminant
 - Phosphorus – connectivity to surface water and Spokane River TMDL
Recommended Approach

- Adopt a three level approach
 - Level 1 CARA spreadsheet (soil mixing) with a few project inputs
 - Level 2 CARA spreadsheet with a few project inputs and additional supporting information
 - Level 3 If Level 1 and 2 do not work, use WDOH Groundwater Mixing analysis or propose and have County approved alternative analytical approach
Analysis Methods

- **Level 1 and 2**
 - CARA spreadsheet
 - Soil nitrogen leachate mixing analysis
 - Checks hydraulic loading requirement
 - Checks nitrate concentration

- **Level 3**
 - WDOH LOSS spreadsheet
 - Groundwater nitrogen mixing analysis
 - Checks groundwater nitrate values

- **All Levels**
 - Distance to surface water
 - Shoreline Master Program protects surface water
Spreadsheet Inputs

- CARA Spreadsheet
 - Level 1
 - Parcel lot size
 - Recharge
 - Wastewater volume
 - Drainfield area
 - Soil type
 - Surface water information
 - Level 2
 - Effluent nitrate concentration
 - Soil denitrification
 - Precipitation nitrate concentration
- LOSS Spreadsheet
 - Level 3
 - Level 1 and 2 information
 - Groundwater hydraulic conductivity
 - Groundwater gradient
 - Upgradient groundwater nitrate concentration
Nitrogen Assessment

- Levels 1 and 2
 - Soil groundwater interface nitrogen concentration <10 mg/L

- Level 3
 - Groundwater nitrogen concentration <5 mg/L
Phosphorus Assessment

- Distance of drain field to surface water, soil-groundwater-surface water pathway
 - Shoreline Master Plan provides general protection
 - Restricts commercial/industrial uses
 - 200-foot buffer
 - Checked using Montana breakthrough analysis, >20 years

- Spreadsheet requires information on surface water and a map
 - Spokane County can require further evaluation
ON-SITE SEPTIC SYSTEM ANALYSIS

Project name: ABC Church
Completed by and Date: John Doe, May 4, 2013
Facility type, size and description: Church, 5 acre parcel, 10,000 square foot building.
Address: ###, Spokane County
Name of nearest waterbody: Spokane River
Distance to shoreline: 2 miles
Depth to groundwater: 75 feet, based on driller well logs within 1/4 mile
Include a map of the parcel: Attached

<table>
<thead>
<tr>
<th>Input Values</th>
<th>Sign</th>
<th>Values</th>
<th>Units</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parcel lot size</td>
<td>A_P</td>
<td>5</td>
<td>acre</td>
<td>Site specific 1 acre = 43,560 ft²</td>
</tr>
<tr>
<td>Recharge</td>
<td>R</td>
<td>4</td>
<td>in/yr</td>
<td>Use recharge Map</td>
</tr>
<tr>
<td>Wastewater volume</td>
<td>V_W</td>
<td>300</td>
<td>gpd</td>
<td>Use table or provide basis</td>
</tr>
<tr>
<td>Drainfield area</td>
<td>A_D</td>
<td>900</td>
<td>ft²</td>
<td>Primary drainfield area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>County Values</th>
<th>Sign</th>
<th>Values</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total nitrogen concentration in wastewater</td>
<td>N_W</td>
<td>45.0</td>
<td>mg/l</td>
<td>Default</td>
</tr>
<tr>
<td>Soil denitrification</td>
<td>d</td>
<td>0.1</td>
<td>unitless</td>
<td>Default</td>
</tr>
<tr>
<td>Nitrate concentration in precipitation</td>
<td>N_R</td>
<td>0.24</td>
<td>mg/l as N</td>
<td>Default</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hydraulic Output Values</th>
<th>Sign</th>
<th>Values</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic loading</td>
<td>D_H</td>
<td>0.6</td>
<td>gal/ft²/day</td>
<td></td>
</tr>
<tr>
<td>Minimum drainfield area</td>
<td>A_D</td>
<td>500</td>
<td>ft²</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nitrate Output Values</th>
<th>Sign</th>
<th>Values</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume of recharge over parcel</td>
<td>V_P</td>
<td>1,488</td>
<td>gpd</td>
<td>A_P * R * conversion</td>
</tr>
<tr>
<td>Total infiltration (drainfield & parcel)</td>
<td>V_P + V_W</td>
<td>1,788</td>
<td>gpd</td>
<td></td>
</tr>
<tr>
<td>Total Nitrogen concentration from drainfield & parcel</td>
<td>N_{ip}</td>
<td>7.0</td>
<td>mg/l as N</td>
<td>((V_P * N_R + V_W * N_W) * (1 - d)) / (V_P + V_W)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Values</th>
<th>Units</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic loading</td>
<td>Okay</td>
<td>unitless</td>
<td>If Revise, review input values</td>
</tr>
<tr>
<td>Nitrate</td>
<td>Okay</td>
<td>unitless</td>
<td>If Revise, review input values</td>
</tr>
</tbody>
</table>
WDOH LOSS Spreadsheet

Washington Department of Health

Level 1 Nitrate Balance for Large On-Site Sewage System

Project name:

Address, city and county:

Completed by (name and title):

Date:

Input Values

<table>
<thead>
<tr>
<th>Factor</th>
<th>Units</th>
<th>Values</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate concentration in precipitation</td>
<td>N_R mg/l as N</td>
<td>0.24</td>
<td>Default</td>
</tr>
<tr>
<td>Total nitrogen concentration in wastewater</td>
<td>N_W mg/l</td>
<td>60</td>
<td>Default - residential strength</td>
</tr>
<tr>
<td>Soil denitrification</td>
<td>d unitless</td>
<td>0.1</td>
<td>Default</td>
</tr>
<tr>
<td>Aquifer thickness</td>
<td>b ft</td>
<td>20</td>
<td>Default or aquifer thickness if known</td>
</tr>
<tr>
<td>Drainfield area</td>
<td>A_D ft2</td>
<td></td>
<td>Primary drainfield area</td>
</tr>
<tr>
<td>Distance from drainfield to property boundary</td>
<td>D_{pb} ft</td>
<td>0</td>
<td>Measure in direction of GW flow</td>
</tr>
<tr>
<td>Aquifer width</td>
<td>W_A ft</td>
<td></td>
<td>Perpendicular to GW flow</td>
</tr>
<tr>
<td>Aquifer hydraulic conductivity</td>
<td>K ft/day</td>
<td></td>
<td>Measured or literature value</td>
</tr>
<tr>
<td>Hydraulic gradient</td>
<td>i ft/ft</td>
<td></td>
<td>If unknown, use 0.010</td>
</tr>
<tr>
<td>Recharge</td>
<td>R in/yr</td>
<td></td>
<td>Recharge will be a % of ppt</td>
</tr>
<tr>
<td>Nitrate concentration of upgradient ground water</td>
<td>N_B mg/l</td>
<td></td>
<td>Prefer sampling data</td>
</tr>
<tr>
<td>Wastewater volume</td>
<td>V_W gpd</td>
<td></td>
<td>Design flows or measured volume</td>
</tr>
</tbody>
</table>

Output Values

- **Groundwater nitrate value** N_{GW} mg/l as N
 - Point of Compliance (POC)
- **Groundwater nitrate value** $N_{GW, ALT}$ mg/l as N
 - Alternative POC

DOH 337-070
Revised: July 2012
Groundwater Recharge & CARA

- Groundwater Recharge is an important variable in the proposed CARA Level 1 & 2 analysis

<table>
<thead>
<tr>
<th>Input Values</th>
<th>Sign</th>
<th>Values</th>
<th>Units</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parcel lot size</td>
<td>A_p</td>
<td>5</td>
<td>acre</td>
<td>Site specific 1 acre = 43,560 ft2</td>
</tr>
<tr>
<td>Recharge</td>
<td>R</td>
<td>4</td>
<td>in/yr</td>
<td>Use recharge Map</td>
</tr>
<tr>
<td>Wastewater volume</td>
<td>V_w</td>
<td>300</td>
<td>gpd</td>
<td>Use table or provide basis</td>
</tr>
<tr>
<td>Drainfield area</td>
<td>A_D</td>
<td>900</td>
<td>ft2</td>
<td>Primary drainfield area</td>
</tr>
<tr>
<td>Soil Type</td>
<td></td>
<td></td>
<td></td>
<td>Use Drop Menu and WAC 246-272A-0220</td>
</tr>
</tbody>
</table>

- At a concentration of 45 mg/l:
 - 2 inches of recharge – 47 gallons per day per acre
 - 6 inches of recharge – 144 gallons per day per acre
- No Existing countywide groundwater recharge data set
Groundwater Recharge

- Groundwater recharge is a dynamic process that is temporally and spatially variable.

- Dependent on many factors:
 - Climate
 - Soil
 - Land use
 - Landscape (slope)

We are interested in the amount that percolates to groundwater.
New Groundwater Recharge Analysis

- Spokane County conducted a recharge analysis using a USGS Groundwater Recharge Model.
- This model was chosen because:
 - Developed by USGS
 - Uses well established data sets that are available for the entire county.
 - Uses well established soil water balance calculation methods
 - Can account for wide variation of climate and land use found in Spokane County
Spokane County Recharge Model

- 114,000 model cells
- 660 ft by 660 ft
- 10 acres each
Data Inputs

- Soil Hydrologic Group
 - NRCS USDA Soil Survey Geographic Database (SSURGO)
 - Measure of runoff potential
Data Inputs

• Available Water Capacity
 ▫ NRCS USDA Soil Survey Geographic Database (SSURGO)
 ▫ Maximum amount of plant available water a soil can provide. Indicator of soil’s ability to retain water.
Data Inputs

- **Land Use**
 - USGS National Land Cover Database
 - Impacts variables such as:
 - Interception of precip from canopy
 - Root zone depth
 - Growing season
 - Open water
 - Low density residential
 - High density residential
 - Commercial/industrial
 - Bare exposed rock
 - Deciduous forest
 - Evergreen forest
 - Mixed forest
 - Shrubland
 - Grassland/herbaceous
 - Pasture
 - Row crops
 - Forested wetland
 - Wetland
 - Shrubland
Data Inputs

- Surface Flow Direction
 - Derived from USGS DEM
 - Which way water would flow on the surface.
Data Inputs

- Climate Data
 - Precipitation
 - Maximum Temperature
 - Minimum Temperature
 - Oregon State University PRISM Climate Group
 - 1981-2010
Recharge Estimate Map

- Average Recharge is 4.9 inches
- Median model cell value is 3.57
- Recharge varies from 0 – 27 inches per year.
• If a recharge value of 4 (median cell value of 3.57 rounded to nearest inch) is used in the CARA Level 1 spreadsheet with a nitrate concentration of 45 mg/l the allowable gallons per day per acres is 95.
Summary

• Application package with CARA spreadsheet*,
 ◦ Based on scientific data and analyses
 ◦ Protective of sensitive groundwater and surface water
 ◦ Provides a consistent review method for Spokane County
 ◦ Provides a straightforward submittal for the applicant
 ◦ Includes an adaptable approach for site specific conditions and/or specific project proposals

* For Level 3, LOSS spreadsheet, or alternatively approved analysis
Questions?